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Preface

In recent years, the neoclassical theory of production seems to have lost its appeal
among academics and graduate students in microeconomic theory courses. Students
in standard economics doctoral programs only receive the minimal exposure to
production and cost functions necessary for an exposition of the theory of markets
en route to the ultimate goal of game theory, experimental economic issues, and
strategic behavior. For example, only 40 of the 971 pages of the Microeconomic
Theory book by Mas-Colell, Whinston, and Green (1995) are devoted to production,
cost minimization, and profit maximization. While a student admittedly has learnt
the basic theory of producer behavior in their “Intermediate Micro Theory” courses,
more advanced concepts like Allen-Uzawa partial elasticities of substitution are
not covered either at undergraduate or at graduate level. An average student
never sees a transcendental logarithmic (Translog) or a Generalized Leontief cost
function in class. Yet, the latter half of the twentieth century was an era of
spectacular development in production theory within economics. The 1951 Cowles
Foundation anthology Activity Analysis of Production and Allocation edited by
Koopmans remains one of the richest collection of essays in economic theory.
Appearing at about the same time, the duality theory of Hotelling, Roy, Hicks,
Samuelson, and Shephard opened up novel ways of analyzing the production
technology through cost, revenue, and profit functions. These topics are rarely
covered in microeconomics courses, although these topics are covered in the two-
volume Production Economics: A Dual Approach to Theory and Applications edited
by Fuss and McFadden (1978). In the meantime, Nerlove used the dual cost function
to empirically estimate the parameters of a Cobb Douglas production function using
data for electric utilities in the USA (1965). Emergence of generalized cost functions
(like the Translog, the Generalized Leontief, and the Generalized CES) liberated
the empirical analyst from the confines of Cobb Douglas, Leontief, or the CES
specifications and enriched both economic theory and econometric analysis in equal
measures. These seem to be history now. By the last decade of the past century,
interest in production theory had clearly waned. Resurgence of identification of
production function in the recent literature mostly focuses on the primal Cobb-
Douglas production function – completely bypassing the duality literature.

Papers included in this three-volume handbook focus on both theoretical con-
cepts and empirical issues from neoclassical production economics. Each of the
chapters is intended to provide a state-of-the-art survey on a specific topic in
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production economics. The objective is to serve as a single unified source of
reference for the serious scholar seeking in-depth knowledge of the underlying
theory behind the sophisticated empirical analysis appearing in applied papers.

The chapters in volumes 1 and 2 of the handbook are devoted exclusively to
theory and different analytical methodologies for empirical estimation. By contrast,
every chapter in volume 3 offers an overview of empirical applications in the
accepted literature that employ the theoretical framework described in volume 1 to
analyze the technical and behavioral relations between relevant variables in various
industries ranging from banking or air transportation to education or professional
sports.

Putting together the 45 chapters of the handbook contributed by more than
twice as many authors, each somehow contributing their valuable time to write the
chapters within their busy schedules already full of numerous commitments, has,
naturally, been a long-drawn effort lasting over years. On top of it, the upheaval
brought about by the Covid-19 pandemic put the viability of the entire project
in jeopardy. Fortunately, however, through the collective effort and cooperation of
the contributing authors and the editorial staff at Springer Nature, we managed to
overcome all hurdles and completed the project.

We are grateful to the editorial staff at Springer Nature for their help and par-
ticularly thank Sagarika Ghosh, Nupoor Singh, Audrey Wong-Hillman, Mokshika
Gaur, and Salmanul Faris Nedum Palli for their valiant effort to keep the publication
on track as much as possible.

At the present moment, rapid and sweeping developments in information tech-
nology are changing the fundamental character of production in many industries,
prompting serious researchers to wonder if there will be any workers left in the
workplace in the near future. We hope that the handbook will help to revive interest
in production economics and inspire a new generation of scholars to revisit and
extend the theory. Only that will make editing this handbook worthwhile.

May 2022 Subhash C. Ray
Robert G. Chambers
Subal C. Kumbhakar
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Abstract

The purpose of this contribution is to provide an overview of developments in
nonconvex production technologies and economic value functions, with special
attention to the cost function. Apart from a somewhat selective review of
theoretical issues, the emphasis is on whether the assumption of convexity makes
a difference in practice. Anticipating our conclusion, we argue that traditional
convex empirical results differ on average rather markedly from alternative
nonconvex ones. This should make the discipline reconsider its traditional
relationship with convexity in both theoretical and applied production analysis.

Keywords

Nonparametric frontier · Convexity · Production · Cost function · Scale ·
Productivit

Introduction

This contribution focuses on deterministic nonparametric frontier technologies that
somehow relax the traditional hypothesis of convexity. Apart from developments
in general equilibrium theory with nonconvexities, we are unaware of any devel-
opments in empirical production theory that allow to empirically document the
eventual impact of the traditional convexity axiom. This explains the narrow and
selective focus of this chapter.

The seminal article of Farrell [61] introduced a single output multiple inputs
deterministic nonparametric frontier technology, but did not establish a link with
linear programming. Boles [20] and Charnes et al. [39] are the first economics and
operations research articles, respectively, that have given the impetus that made the
nonparametric approach to production one of the great success stories in terms of
both methodological developments and empirical applications. While the axiom of
convexity is traditionally maintained in these nonparametric production models (see
Afriat [4], Banker et al. [13], Charnes et al. [39], Diewert and Parkan [50]) as well
as in the mainstream empirical economic literature on production analysis, Afriat
[4] was probably the first to mention a basic single output nonconvex technology
imposing the assumptions of strong input and output disposability. Amultiple output
version has probably been proposed for the first time in Deprins et al. [49] and these
authors suggested the moniker Free Disposal Hull (FDH).

The work of Scarf [108–111] may well be considered as an important prede-
cessor of FDH, since he studied activity analysis models based on integer data. For
instance, Figure 1 displayed in Scarf [108, p. 3638] resembles the FDH as we know
it. Without the pretension to recount the history of the FDH technology in detail, it
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suffices to mention Lovell and Vanden Eeckaut [88, footnote 2] lists another three
potential historical sources of the FDH concept.

This traditional stress on convex applied production analysis is to some extent
surprising, since it is theoretically well-known that important features of technology
fundamentally violate the convexity of the production possibility set (see Farrell
[62]). First, indivisibility implies that inputs and outputs are not necessary perfectly
divisible. Furthermore, scaling down or up the entire production process in infinites-
imal fractions may not be feasible. Examples include the start-up and shutdown
costs in industries (see, e.g., O’Neill et al. [93] for electricity generation). Scarf
[112,113] stresses the importance of indivisibility in selecting among technological
options. Second, economies of scale (e.g., modern information technology) and
economies of specialization (e.g., Romer [106] on nonrival inputs in the new growth
theory) violate the convexity of technology. Third, the existence of positive or
negative production externalities also leads to nonconvexities. Thus, the structure
of production in society is potentially full of nonconvexities.

It should be realized that the natural environment is full of nonconvexities
as well (see Dasgupta and Mähler [46] for an overview). Ecologists identify
pathways by which ecosystem constituents interact with one another and with the
external environment. A large body of empirical work reveals that those pathways
often involve transformation possibilities among environmental goods and services
that constitute nonconvex sets (e.g., see Boscolo and Vincent [21] on forestry
economics). In the words of Dasgupta and Mähler [46]: “The word “convexity”
is ubiquitous in economics, but absent from ecology.”

This book chapter is structured as follows. Section “Technologies and Distance
Functions: Basic Definitions” provides some basic definitions of the traditional
axioms underlying technologies and their representation via distance functions. Sec-
tion “Axiom of Convexity: Arguments” discusses in detail the existing justifications
for the axiom of convexity. Section “Nonparametric Nonconvex Technologies and
Value Functions: Free Disposal Assumption and Minimum Extrapolation Principle”
first focuses on nonconvex FDH with its extensions and the corresponding tradi-
tional convex technologies, then followed by a discussion of nonconvex economic
value functions as well as efficiency decompositions and tests of convexity that have
been conceived in the literature. Next, we offer an empirical perspective on the use
of FDH and its extensions on a variety of topics. Finally, we discuss some further
methodological refinements. Section “Mitigating Convexity: A Selection” offers a
very selective review of several attempts to mitigate the impact of the convexity
axiom while avoiding FDH and its extensions. Section “Conclusions” concludes
and outlines some future research issues.

Technologies and Distance Functions: Basic Definitions

A production technology describes all available possibilities to transform input
vectors x = (x1, . . . , xm) ∈ R

m+ into output vectors y = (y1, . . . , yn) ∈ R
n+.

The production possibility set or technology T summarizes the set of all feasible
input and output vectors: T = {(x, y) ∈ R

m+ × R
n+ : x can produce y}. Note
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that it may be surprising that the main contributions in this literature continue
considering that the technology is a subset of Rm × R

n. In section “Nonparametric
Nonconvex Technologies and Value Functions: Free Disposal Assumption and
Minimum Extrapolation Principle” we open a perspective on considering the
domain N

m × N
n instead.

Given our focus on input-oriented efficiency measurement later on, this technol-
ogy can be represented by the input correspondence L : Rn+ → 2R

m+ where L(y) is
the set of all input vectors that yield at least the output vector y:

L(y) = {x : (x, y) ∈ T } . (1)

The radial input efficiency measure is a map E : Rm+ × R
n+ −→ R+ ∪ {∞} that

can be defined as:

E (x, y) = min {λ : λ ≥ 0, λx ∈ L(y)} . (2)

This radial efficiency measure, which is the inverse of the input distance function,
indicates the minimum contraction of an input vector by a scalar λ while still
remaining in the input correspondence. Obviously, the resulting input combination
is located at the boundary of this input correspondence. For our purpose, the radial
input efficiency has two key properties (see, e.g., Hackman [68]). First, it is smaller
or equal to unity (0 ≤ E (x, y) ≤ 1), whereby efficient production on the isoquant
of L(y) is represented by unity and 1−E (x, y) indicates the amount of inefficiency.
Second, it has a cost interpretation. Note that more general efficiency measures are
around in the literature: one example is the directional distance function introduced
by Chambers et al. [38] that is sometimes mentioned in this contribution.

Consider a set of K observations A = {(x1, y1) , . . . , (xK, yK)} ∈ R
m+ × R

n+.
In the following, let us denote K = {1, . . . , K}. Nonparametric specifications of
technology can then be estimated by enveloping these K observations in the set A

while maintaining some basic production axioms (see Hackman [68] or Ray [104]).
We are interested in defining minimum extrapolation technologies satisfying the
following assumptions:

T 1: (0, y) ∈ T ⇒ y = 0; (0, 0) ∈ T .

T 2: T is closed.
T 3: For all (x, y) ∈ T and all (u, v) ∈ R

m+ ×R
n+ if (x,−y) ≤ (u,−v), then

(u, v) ∈ T .
T 4: T exhibits (ı) constant returns to scale (CRS), δT ⊆ T ,∀δ > 0; (ıı)

nonincreasing returns to scale (NIRS), δT ⊆ T ,∀δ ∈ (0, 1);(ııı) nondecreasing
returns to scale (NDRS), δT ⊆ T ,∀δ > 1; (ıv) variable returns to scale (VRS),
when (ı), (ıı), and (ııı) do not hold.

T 5: T is convex.

We briefly expand on the interpretation of these basic axioms. Axiom (T1) states
that there is no free lunch and that inaction is feasible. Axiom (T2) indicates that
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the technology is closed. Axiom (T3) represents strong or free disposability in the
inputs and the outputs: inputs can be wasted without opportunity costs, and outputs
can be reduced at will. Axiom (T4) defines all four traditional returns to scale
hypotheses (i.e., constant, nonincreasing, nondecreasing, and variable (flexible)
returns to scale). Finally, the convexity assumption (T5) is traditional, but it is not
indispensable.

Axiom of Convexity: Arguments

While the axiom of convexity (T5) is traditionally maintained in economics, we
develop three types of arguments to put it under scrutiny. Two arguments are related
to economic theory. One argument is more pragmatic: in empirical applications,
it turns out that managers often object to convexity. Sometimes the motivation to
maintain the convexity axiom is just analytical convenience (see, e.g., Hackman
[68, p. 2]). We think this is an argument that is valid only if one can show that
convex results provide a reasonably good approximation to a potentially nonconvex
economic reality.

Convexity and Duality

Often duality is invoked as a reason to maintain convexity. Since the main duality
relations in economics linking, e.g., production and cost approaches presume
some form of convexity, in applied empirical production analysis, researchers feel
compelled to maintain the same axioms. It is an open question whether this desire
for theoretical consistency is cogent.

We explore this viewpoint a little bit. The traditional duality results often fit in a
general equilibrium framework that maintains convexity in its simplest forms. But,
applied researchers tend to forget that general equilibrium theory has become less
attractive as a general normative framework since the Sonnenschein-Mantel-Debreu
results appeared in the early 1970s. Almost entirely negative conclusions appeared
about the uniqueness and stability of general equilibrium. While uniqueness only
occurs under restrictions void of economic realism, instability is the rule rather than
the exception since almost any continuous pattern of price movements may occur in
general equilibrium (see Ackerman [2]).

Furthermore, general equilibrium theory has been developed under more general
conditions of nonconvexity on technology and preferences (see Chavas and Briec
[41]). Realistically, this involves some process of nonlinear pricing. At the firm
level, one may therefore look for proper nonconvex specifications that do justice to
the nonconvexities in technology. This may imply recourse to more complex duality
relations, but this is simply the price to pay for the gain in realism. The FDH and
its extensions can be seen as one example that may fit into such a strategy (see, e.g.,
Agrell and Tind [5]).
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Convexity and Time Divisibility

Several economic theorists interpret convexity of technology solely in terms of time
divisibility of technologies and see no other justification for its use.

Hackman [68, p. 39] puts things clearly when discussing the axiom of convexity
in his textbook:

It does have the following “time-divisibility” justification. Suppose input vectors x1 and x2
each achieve output level u > 0. Pick a λ ∈ [0, 1], and imagine operating 100λ% of the
time using x1 and 100(1 − λ)% of the time using x2. At an aggregate level of detail, it is
not unreasonable to assume that the weighted average input vector λx1 + (1−λ)x2 can also
achieve output level u.

Jacobsen [70, p. 759] remarks when discussing the quasi-concavity property of
the production function:

(A.5) implies a time divisibility in the production process.

Shephard [116, p. 15] states about the property of convexity of the input set:

Property P.8 is valid for time divisibly-operable technologies. For example, if x ∈ L(u), y ∈
L(u) and θ ∈ [0, 1], the input vector [(1− θ)x + θy] may be interpreted as an operation of
the technology a fraction (1 − θ) of some unit time interval with the input vector x and a
fraction θ with y, assuring at least the output rate u.

The added footnote at the end of the last cited phrase reads: “Indeed the input vector
[(1 − θ)x + θy] may have no meaning unless so interpreted.”

This time divisibility argument basically ignores setup and lead times which
make a switch between the underlying activities costly in terms of time. This implies
that convexity becomes questionable when time indivisibilities compound all other
reasons for spatial nonconvexities (e.g., indivisibilities, increasing returns to scale,
economies of specialization, externalities, etc.).

Convexity andManagerial Practice: Some Skepticism Around

Decision-makers do not necessarily believe in convexity. This is evidenced in
remarks, scattered in the literature, on the problems encountered in communicating
the results of traditional efficiency measurement assuming convexity to decision-
makers. We provide some examples of quotes reflecting this doubt of managers to
the axiom of convexity.

In a study applying convex nonparametric frontier methods to measure bank
branch efficiency, Parkan [96, p. 242] notes:

The comparison of a branch which was declared relatively efficient, to a hypothetical
composite branch, did not allow for convincing practical arguments as to where the
inefficiencies lay.

Epstein and Henderson [53, p. 105] report similar experiences in that managers
simply question the feasibility of the hypothetical projection points resulting from
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convex nonparametric frontiers when discussing an application to a large public-
sector organization:

The algorithm for construction of the frontier was also discussed. The frontier segment
connecting A and B was considered unattainable. It was suggested that either (1) these
two DMUs should be viewed as abnormal and dropped from the model, (2) certain key
variables have been excluded, or (3) the assumption of linearity was inappropriate in this
organization. It appears that each of these factors was present to some degree.

In a very similar vein, Bouhnik et al. [22, p. 243] state:

Equally as important, it is our experience that managers often question the meaning of
convex combinations that involve what they perceive to be irrelevant DMUs.

All quotes seem to point to the fact that convexity may well in practice combine
observations that are too far apart in terms of input mix, output mix, and/or scale of
operations. While one hopes for a rather uniformly dense rather well-spaced cloud
of points that avoids the combination of extreme points of production, such extreme
combinations apparently occur and are puzzling for managers.

In a value efficiency analysis application (a way of incorporating preference
information into efficiency analysis), Halme et al. [69, p. 11] also opt for its use
with FDH because this matched the preferences of management:

The management was also more comfortable providing preference information over existing
units than virtual units, and found the results valuable.

Also some researchers concede that nonconvex analysis of production facilitates
the practical use of efficiency analysis. For instance, Bogetoft et al. [19, p. 859]
declare in this context:

In general, allowing the possibility set to be nonconvex facilitates the practical use of
productivity analysis in benchmarking. In particular, fictitious production possibilities,
generated as convex combinations of those actually observed, are usually less convincing
as benchmarks, or reference units, than actually observed production possibilities.

This experience is confirmed by Halme et al. [69, p. 10]:

During our long experience of DEA applications we repeatedly encountered the phe-
nomenon that DMs (Decision Maker) are reluctant to evaluate other than existing units.

Obviously, we understand that this is just casual evidence that transpires from the
empirical literature. But, it is useful to consider in addition to the other arguments
above.

Turning to a mathematical argument, notice that there exists some general
condition under which a distance function (related to the efficiency measure (2))
can characterize a nonconvex technology. This general condition is independent of
the strong disposability assumption (T3) (though we use it in the remainder for
computational reasons). One can provide a simple condition considering the radian
subset of R ∈ R

d . A subset R of Rd is a radian set if for all λ ∈ [0, 1] and all x ∈ R,
λx ∈ R. Equivalently, such a subset is called a starshaped set (see Aliprantis and
Border [6] for related concepts). A subset S is co-radian if for all λ ≥ 1, λx ∈ S. In
the field of functional analysis in mathematics, a distance function is called a gauge
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function (analogous to the Minkowski functional for symmetrical sets). This is a
function that recovers a notion of distance on a linear space. For all subset D of Rd ,
the gauge function ψD is the map ψD : Rd −→ [0,∞] defined by:

ψD(x) = sup{δ : δx ∈ D}, (3)

with the convention that ψD(x) = 0 if there is no λ ≥ 0 such that λx ∈ A.
Paralleling this definition, for all co-radian set, one can define a co-gauge as:

ηD(x) = inf{δ : δx ∈ D}. (4)

This definition implies that for all, respectively, closed radian and co-radian sets R

and S:

R = {x ∈ R
d : ψR(x) ≥ 1} and S = {x ∈ R

d : ηS(x) ≤ 1} (5)

It follows that a production technology can be characterized from the efficiency
measure (2) if and only if the input set L(y) is co-radian for all y ∈ R

m+. Considering
an output-oriented efficiency measure, such a characterization applies if and only if
the output set is a radian (starshaped) set.

Nonparametric Nonconvex Technologies and Value Functions:
Free Disposal Assumption andMinimum Extrapolation Principle

Technologies: FDH and Its Extensions

While Deprins et al. [49] are commonly acknowledged as the developers of the
basic FDH model, Kerstens and Vanden Eeckaut [73] extended this basic model by
introducing the possibilities of constant, nonincreasing, and nondecreasing returns
to scale. This leads to the definition of three new technologies complementary to
the assumption of flexible or variable returns to scale embodied in the basic FDH
model.

Individual production possibility sets are based upon one production unit
(xk, yk), the strong disposability assumption, and different maintained hypotheses
of returns to scale:

N�(xk, yk) = {
(x, y) ∈ R

m+ × R
n+ : x ≥ δxk, y ≤ δyk, δ ∈ �

}
, (6)

where � ∈ {�CRS, �NDRS, �NIRS, �V RS}, with:

(i) �CRS = {δ : δ ≥ 0} ;
(ii) �NDRS = {δ : δ ≥ 1} ;
(iii) �NIRS = {δ : 0 ≤ δ ≤ 1} ;
(iv) �V RS = {δ : δ = 1} .
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Unions and convex unions of these individual production possibility sets yield the
nonconvex technologies on the one hand and the traditional convex models on the
other hand:

TNC,� =
⋃

k∈K
N�(xk, yk) and TC,� = Co

( ⋃

k∈K
N�(xk, yk)

)
, (7)

where Co stands for the convex hull operator.
In addition to this approach based on sets and their operations, an alternative and

useful formulation can be proposed making some analogy to the traditional convex
model. Let us introduce the following notation:

�C =
{ ∑

k∈K
zk = 1, zk ≥ 0

}
and �NC =

{ ∑

k∈K
zk = 1, zk ∈ {0, 1}

}
.

A unified algebraic representation of convex and nonconvex technologies under
different returns to scale assumptions for a sample of K observations is found in
Briec et al. [30]:

T�,� =
{
(x, y) ∈ R

m+ × R
n+ : (x,−y) ≥

∑

k∈K
δzk(xk,−yk), zk ∈ �, δ ∈ �

}
,

(8)

where � ∈ {�NC,�C}. First, there is the activity vector (z) operating subject to a
convexity (C) or nonconvexity (NC) constraint. Second, there is a scaling parameter
(δ) allowing for a particular scaling of all K observations spanning the technology.
This scaling parameter is smaller than or equal to 1 or larger than or equal to 1 under
nonincreasing returns to scale (NIRS) and nondecreasing returns to scale (NDRS),
respectively, fixed at unity under variable returns to scale (VRS), and free under
constant returns to scale (CRS).

Briec et al. [30, Proposition 1] prove the following result:

Proposition 1 ( [30, p. 166]). The nonconvex technologies T�NC,� are the minimal
extrapolation technologies containing the data A = {(xk, yk) : k ∈ K} ⊂ R

m+ ×R
n+

and satisfying the axioms T 1 to T 4.

The same statement for basic FDH solely has earlier been developed in Färe and
Li [55]: FDH can be seen as the closest inner approximation of the true, strongly
disposable but possibly nonconvex technology.

The advantages of this formulation (8) are twofold. First, it offers a coherent for-
mulation of all basic technologies under the four basic returns to scale assumptions
(T4) and under both convexity (T5) and nonconvexity. For example, under VRS (i.e.,
setting δ = 1) and no convexity (i.e., constraint (�NC)), one obtains the classical
FDH technology:
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T�NC,�V RS
=

{
(x, y) ∈ R

m+ ×R
n+ : (x,−y) ≥

∑

k∈K
zk(xk,−yk), z ∈ �NC

}
, (9)

as formulated by Deprins et al. [49]. As another example, under VRS and convexity
(i.e., constraint (�C)), one retrieves the basic technology defined by Banker et al.
[13] and Färe et al. [56]:1

T�C,�V RS
=

{
(x, y) ∈ R

m+ ×R
n+ : (x,−y) ≥

∑

k∈K
zk(xk,−yk), z ∈ �C

}
. (10)

Second, its pedagogical advantage is that it neatly separates the role of the various
assumptions in the formulation of technology. For instance, the restrictions on the
scaling parameter (δ) relate directly to the basic definitions of the axioms on returns
to scale (T4). Furthermore, the sum constraint on the activity vector z (i.e., constraint
(�C)) relates to the convexity axiom (T5).

In this way, one can avoid confusing statements as found in the literature. For
instance, the sum constraint on the activity vector z (i.e., constraint (�C)) in the
envelopment or primal formulation (10) is often called a “convexity constraint”
under the VRS assumption, while the CRS technology has no such constraint in
the formulation of Charnes et al. [39] though it also maintains the convexity axiom
(see, e.g., Cook and Seiford [44, p. 2–3]).

To compute the radial input efficiency measure (2) relative to convex technolo-
gies in (8) requires solving a nonlinear programming problem (NLP) for each
evaluated observation. As shown in Briec and Kerstens [28, Lemma 2.1], this NLP
can be transformed into the familiar linear programming (LP) problems that are
known from the literature by substituting wk = δzk .

For the nonconvex technologies in (8), the radial input efficiency measure (2)
requires computing a nonlinear binary mixed integer program (NLBMIP): see Briec
et al. [30, p. 166]. In fact, to reduce the computational complexity of this NLBMIP
problem, three distinctive alternative solution methods have been proposed in the
literature. First, Podinovksi [99] reformulates all these nonconvex technologies as
binary mixed integer programs (BMIP) using a big M technique. Second, starting
from an existing LP model for the basic FDH model (9) (see Agrell and Tind
[5]), Leleu [85] formulates for all these nonconvex technologies equivalent LP
problems. Third, Briec et al. [30] develop for all nonconvex technologies an implicit
enumeration strategy to obtain closed form solutions for the radial input efficiency
measure (2):2

Proposition 2. Let ENC,� denote the radial input efficiency measure defined with
respect to technologies T�NC,� . For all (x, y) ∈ T�NC,� and k = 1, · · · ,K , let us

1Note that the convex VRS and NDRS technologies do not satisfy inaction.
2Note that the use of enumeration for the basic nonconvex FDH production model (9) has been
around in the literature for quite a while: examples include [49, 63, 122], among others.
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denote:

αk(x) = max
i∈I (x)

xki

xi

and βk(y) = max
j∈J (yk)

yj

ykj

,

where for all (x, y) ∈ R
m+ ×R

n+, I (x) = {i ∈ {1, . . . , m} : xi > 0} and J (y) =
{j ∈ {1, . . . , n} : yj > 0}. We have, for all (x, y) ∈ T�NC,�:

ENC,�(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
(xk,yk)∈B�(x,y)

αk(x) if � = �V RS;
min

(xk,yk)∈B�(x,y)
βk(y) · αk(x) if � ∈ {�CRS, �NIRS};

min
(xk,yk)∈B�(x,y)

{max {βk(y), 1} · αk(x)} if � = �NDRS.

with B�(x, y) = {(xk, yk) : δxk ≤ x, δyk ≥ y, δ ∈ �}.

Briec and Kerstens [28, p. 148–149] refine this analysis and also offer closed
form solutions for the output-oriented and graph-oriented efficiency measures. Fur-
thermore, these authors indicate that the computational complexity of enumeration
is advantageous compared to the BMIP or LP approaches. Indeed, the maximum
(minimum) of a vector with n components can be calculated in the worst case in
O(n) arithmetic operations. Thus, to enumerate on the data set with the number of
firms K , the number of arithmetic operations is about O(LK(m + n)), where m

and n represent the number input and output dimensions and L is a measure of data
storage for a given precision. A standard linear program has a O(LK3) polynomial
time complexity linked to the number of observed firms K . Since K > m + n in
general, the time complexity of enumeration is thus better than LP. In fact, Kerstens
and Van de Woestyne [75] empirically document that implicit enumeration is by far
the fastest solution strategy followed by BMIP and finally LP.3 Kerstens and Van de
Woestyne [76] provide closed form solutions for the directional distance functions
under alternative returns to scale assumptions.

One can mention that in this nonconvex framework, one can also treat the discrete
case by considering that the technology is a subset of Nm × N

n (instead of Rm ×
R

n). However, the radial measure (2) involves an assumption of divisibility and
is therefore unsuitable. In line with Andriamasy et al. [9], one can overcome this
problem by using the directional distance function (see Chambers et al. [38]) and
selecting a direction that is the unit vector of Nm × N

n.
In principle, the appropriateness of the convexity axiom can be tested for any

comparison between convex and nonconvex technologies imposing a similar returns
to scale hypothesis. We can define tests for the convexity of technology as a simple
ratio between the convex and nonconvex input efficiency measures. Thus, the ratio:

3This poor performance is related to the huge size of the LP formulation in Leleu [85].
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CT�(x, y) = EC,�(x, y)/ENC,�(x, y) (11)

determines a nonparametric local goodness-of-fit test for the convexity of technolo-
gies conditional on the scaling law � (see Briec et al. [30, p. 178]).

Economic Value Functions

The nonconvex production models have been complemented by nonconvex cost
functions with corresponding specific returns to scale assumptions in Briec et al.
[30]. Turning to a dual representation of technology, recall that the cost function
C : R

n+ × R
m+ −→ R+ ∪ {∞} defines the minimum costs to produce an output

vector y given a vector of semi-positive input prices (w ∈ R
m+):

C(y,w) = inf {w · x : x ∈ L(y)} . (12)

Briec et al. [30, p. 175–176] establish a local duality result between the nonconvex
cost functions and the nonconvex FDH and its extensions.

The computation of the cost function (12) relative to convex nonparametric tech-
nologies TC,� again requires an NLP to be solved for each evaluated observation.
As above, this NLP can be transformed into the familiar LP problem that is known
from the literature (e.g., Hackman [68]).

The cost function (12) relative to the nonconvex technology TNC,� involves
computing a NLBMIP as mentioned above. Again, to reduce the computational
complexity of this NLBMIP problem, three distinctive solution methods can be
pursued. First, following the Podinovksi [99] approach, one can transform these
nonconvex cost functions to BMIPs. Second, Leleu [85] formulates for all these
nonconvex cost functions equivalent LP problems. Third, Briec et al. [30] develop
for all nonconvex cost functions an implicit enumeration strategy yielding closed
form solutions. For all y ∈ R

n+, let us denote:

V�(y, xk, yk) = {
x ∈ R

m+; (x, y) ∈ N�(xk, yk)
}

(13)

By construction, we have:

CNC,�(y,w) = min

{

w · x : x ∈
⋃

k∈K
V�(y, xk, yk)

}

. (14)

By defining C
(k)
NC,�(y,w) = min{w · x : x ∈ V�(y, xk, yk)}, we obtain:

CNC,�(y,w) = min
k∈K

C
(k)
NC,�(y,w). (15)
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Interestingly the above properties can be derived from the standard background
of convex analysis (see Clarke [43] and Rockafeller andWets [105] for references).4

Given a closed subset D of Rd , let δD : Rd −→ R∪{−∞} be the indicator function
defined as:

δD(z) =
{

0 if x ∈ D

−∞ if x /∈ D
(16)

One can then show that:

inf{w.z : z ∈ D} = inf{w.z − δD(z) : z ∈ R
d} = δ�

D(w), (17)

where δ�
D(w) stands for the conjugate of δD . Suppose moreover that for all k ∈ K,

Dk is a closed subset of Rd and that D = ⋃
k∈K Dk .

δ�
D(w) = δ�⋃

k∈K Dk
(w) = inf{w.z − δ⋃

k∈K Dk
(z) : z ∈ R

d} (18)

= inf{w.z − max
k∈K

δDk
(z) : z ∈ R

d} = inf
{
min
k∈K

(
w.z − δDk

(z)
) : z ∈ R

d
}

(19)

= min
k∈K

inf{w.z − δDk
(z) : z ∈ R

d} = min
k∈K

δ�
Dk

(w). (20)

Along this line we obtain for all k ∈ K:

C
(k)
NC,�(y,w) = δ�

V�(y,xk,yk)
(w) and CNC,�(y,w) = min

k∈K
δ�
V�(y,xk,yk)

(w).

(21)

Notice that a similar method applies for efficiency analysis. The next result is then
derived.

Proposition 3. Let CNC,�(y,w) denote the cost function with respect to technolo-
gies T�NC,� . For all (y,w) ∈ R

n+ ×R
m+, we have:

CNC,�(y,w) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
k∈K

{w · xk : yk ≥ y} if � = �V RS;
min
k∈K

{βk(y)w · xk} if � = �CRS;
min{k:βk(y)≤1}

{βk(y)w · xk} if � = �NIRS;
min
k∈K

{
max {βk(y), 1} w · xk

}
if � = �NDRS;

4This point was suggested to the authors by R. Chambers.



734 W. Briec et al

where J (y) = {j : yj > 0} and βk(y) = maxj∈J (yk)
yj

ykj
are defined as in

Proposition 2.

Remark that Ray [104, Section 10.2] shows that the basic FDH cost function
yields the same result as the Weak Axiom of Cost Minimization (WACM) as defined
by Varian [123]. This is intuitively obvious since WACM only imposes convexity
of the input set, and thus this partial convexity yields the same cost function as the
one not imposing convexity at all.

Now, there is a property of the cost function in the outputs worthwhile spelling
out. Some seminal contributors to axiomatic production theory state that the cost
function is nondecreasing and convex (nonconvex) in the outputs when convexity
of technology is assumed (rejected) (e.g., Färe [54, p. 87], Jacobsen [70, p. 765],
Shephard [116, p. 227], or Shephard [117, p. 15]). A central result established in
Briec et al. [30] is that cost functions based on convex technologies are always
smaller or equal to cost functions based on nonconvex technologies.

Proposition 4 ( [30, p. 171]). The convex and nonconvex cost functions CC,� and
CNC,� , respectively, satisfy the following properties:

(a) For all (y,w) ∈ R
n+ × R

m+, CC,�(y,w) ≤ CNC,�(y,w).
(b) In the single output case, if � = �CRS , then CC,�(y,w) = CNC,�(y,w).

Both cost functions are only equal in the case of CRS and a single output.
Proposition 4 can be conceived as a more detailed result spelling out the
precise impact of convexity on the above property of cost functions in the
outputs.

Obviously, these results can also be transposed to other economic value func-
tions. Revenue functions based upon convex technologies are higher than or equal to
revenue functions based upon nonconvex technologies. Only in the single input and
CRS case, both these revenue functions coincide. For the long-run profit function,
by contrast, the use of convex technologies or nonconvex technologies is logically
indistinguishable. However, for any other restricted profit function, one obtains the
result that profit is higher or equal when tangent to a convex instead of a nonconvex
technology.

Also the appropriateness of the convexity axiom can be tested by comparing
convex and nonconvex value functions imposing a similar returns to scale hypoth-
esis. A simple test of the convexity of, e.g., the cost function can be defined
as a simple ratio between the convex and nonconvex cost functions. Thus, the
ratio:

CC�(y,w) = CC,�(y,w)/CNC,�(y,w) (22)

determines a nonparametric local goodness-of-fit test for the convexity of cost
functions conditional on the scaling law � (see Briec et al. [30, p. 178]). Obviously,
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this convexity test in Definition 22 is similar in structure to the test earlier developed
in Definition 11.

Efficiency Decompositions and the Testing of Convexity: A Priori
Relations

While Farrell [61] provided the first measurement scheme for the evaluation of
Technical and Allocative Efficiency in a frontier context, Färe et al. [57] and Seitz
[115] both offer alternative extended efficiency taxonomies. Because it is in our
opinion the most widespreadly used, we stick in this contribution to the conceptual
framework developed in Färe et al. [57, pp. 3–5].

The radial efficiency measure (2) used relative to different technologies entails
the different concepts in this efficiency taxonomy of Färe et al. [57]. By conditioning
the notation of the radial efficiency measure (2) on, e.g., a particular returns to scale
hypothesis, it is straightforward to provide a formal characterization of all efficiency
notions in the following definition (see, e.g., Briec et al. [30, p. 179]).

The following input-oriented efficiency notions are identified:

(a) Technical Efficiency T E�(x, y) = E�,VRS(x, y).
(b) Overall Technical Efficiency OT E�(x, y) = E�,CRS(x, y).
(c) Scale Efficiency SCE�(x, y) = E�,CRS(x, y)/E�,V RS(x, y).
(d) Overall Efficiency OE�(x, y,w) = C�,CRS(y,w)/(w · x).
(e) Allocative Efficiency AE�(x, y,w) = OE�(x, y,w)/OT E�(x, y).

While Technical Efficiency (T E�(x, y)) requires production on the boundary of
the VRS technology, Overall Technical Efficiency (OT E�(x, y)) necessitates that
production is situated on the boundary of the CRS technology. Scale Efficiency
(SCE�(x, y)) reflects a social goal and is measured by the ratio between the
actual (VRS) and ideal (CRS) technological configurations. Overall Efficiency
(OE�(x, y,w)) requires computing a cost function relative to a CRS technology
(C�,CRS(y,w)) and taking the ratio between minimal and observed costs (w · x).
Allocative Efficiency (AE�(x, y,w)) is a residual term computed by the ratio of
OT E�(x, y) and OT E�(x, y).5

Since E�,CRS(x, y) ≤ E�,V RS(x, y), evidently 0 < SCE�(x, y) ≤ 1. The
embeddedness of technologies in terms of returns to scale assumptions determines
the relations between these efficiency measures. These static efficiency concepts are
mutually exclusive, and their radial measurement yields a multiplicative decompo-
sition:

5This decomposition ignores structural efficiency or congestion. Recently, an attempt was made
to develop new methods to measure strong forms of hypercongestion for convex and nonconvex
technologies alike in Briec et al. [31]. This new methodology is empirically illustrated in Briec et
al. [32]. Abad and Briec [1] transpose this methodology toward the modeling of bad outputs using
a by-production framework.
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OE�(x, y,w) = AE�(x, y,w) · OT E�(x, y) (23)

where OT E�(x, y) = T E�(x, y) · SCE�(x, y).
To develop tests for convexity, we clarify the relationship between convex and

nonconvex decompositions:

Proposition 5 ( [30, p. 180]). For all (x, y) ∈ R
m+ ×R

n+, the relations between
convex and nonconvex decomposition components are: (a) OT EC(x, y) ≤
OT ENC(x, y); (b) T EC(x, y)≤T ENC(x, y); (c)OEC(x, y,w)≤OENC(x, y,w).

Thus, while three out of the five above efficiency notions can be ordered with
respect to the impact of convexity, there is no a priori ordering possible for
the nonconvex and convex scale (SCE�(x, y)) and Allocative (AE�(x, y,w))
Efficiency components. Though the underlying efficiency measures can be ordered,
it is not possible to order the ratios between these efficiency measures.

Nonparametric goodness-of-fit tests for the convexity of the efficiency com-
ponents based upon constant returns to scale technologies and cost functions,
respectively, are provided by the following ratios (see Briec et al. [30, p. 181]):

CRT E(x, y) = OT EC(x, y)/OT ENC(x, y) (24)

and

CRCE(x, y,w) = OEC(x, y,w)/OENC(x, y,w). (25)

Several methods have been proposed in the literature to obtain qualitative
information regarding global returns to scale (e.g., see Seiford and Zhu [114]). Since
these methods are not suitable for nonconvex technologies, Kerstens and Vanden
Eeckaut [73, Proposition 2] generalize an existing goodness-of-fit method to suit all
technologies. Including a fourth returns to scale case only relevant for nonconvex
technologies (see Podinovksi [98]), the following proposition summarizes this
method.

Proposition 6 ([35, p. 579]). Conditional on the optimal efficient point, technology
T�,V RS is globally characterized by:

(a) CRS : E�,NIRS(x, y) = E�, NDRS(x, y) = E�,V RS(x, y);
(b) IRS : E�,NIRS(x, y) < E�,NDRS(x, y) ≤ E�,V RS(x, y);
(c) DRS : E�,NDRS(x, y) < E�,NIRS(x, y) ≤ E�,V RS(x, y);
(d) SCRS : E�,NIRS(x, y) = E�,NDRS(x, y) < E�,V RS(x, y);

where IRS, DRS, and SCRS stand for increasing, decreasing, and sub-constant
returns to scale, respectively.
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Table 1 Nonconvex and convex cost estimates: a selection

Article Ratio CC�(y,w) (in %) Remarks

Balaguer-coll et al. [11] 58.87

Briec et al. [30] 97.76 CRS

Cummins and Zi [45] 50.55

De Borger & Kerstens [47] 77.59

Grifell-Tatjé & Kerstens [67] 90.85 Actual

79.82 Ideal

Viton [124] 87.64 1 Output

92.77 4 Outputs

Essentially, these CRS, NIRS, and NDRS technologies are auxiliary to determine
the position of an observation relative to the true flexible (i.e., VRS) returns to
scale technology. Recently, Mostafaee and Soleimani-Damaneh [92] propose a
more elaborated taxonomy of global returns to scale characterizations for nonconvex
technologies based on results of Mostafaee and Soleimani-Damaneh [91].

Empirical Evidence on FDH and Its Extensions: The Impact
of Convexity

This subsection focuses on the key question: does nonconvexity matter in empirical
applications when compared to traditional convex analysis? We provide some
evidence for a selection of four economic topics: (i) cost functions, (ii) efficiency
decompositions, (iii) productivity growth, and (iv) capacity utilization.

Cost Function Results
In Table 1 we list a small selection of studies that report the results of convex and
nonconvex frontier cost estimates. The first column lists the authors of the article,
the second column reports the ratio CC�(y,w) as defined in Definition 22, and the
third column eventually provides a remark.6

The Balaguer-Coll et al. [11] study on Spanish municipalities reveals that convex
costs are only 58.87% of nonconvex costs at the sample average. Analyzing the US
life insurance industry, Cummins and Zi [45] even report 50.55% on average for
CC�(y,w): this means that convex cost is about half of the nonconvex costs. The
De Borger and Kerstens [47] analysis of Belgian municipalities shows that convex
costs are only 77.59% of convex costs. In a study of Spanish electricity distribution,

6In case the study does not report cost estimates but rather overall efficiency ratios, one can
obtain CC�(y,w) = CC,�(y,w)/CNC,�(y,w) by taking the ratio of the corresponding overall
efficiency ratios OEC(x, y,w)/OENC(x, y,w). The observed cost in each of the denominators
of OE�(x, y,w) cancels out.
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Grifell-Tatjé and Kerstens [67] report a ratio of 90.85% when using data from the
actual network and of 79.82% when using data from an ideal engineering network.

The Briec et al. [30] study lists a ratio of 97.76%, but this study imposes CRS
and therefore meets one of the two conditions for equality (see Proposition 4).
The Viton [124] article is a bit a special case in that the author compares
WACM and traditional convex cost estimates: since WACM coincides with a
nonconvex estimate, this amounts to an implicit test of convexity. He reports a
ratio of 87.64% under a single output specification (meeting again one of the two
conditions for equality, Proposition 4) and a ratio of 92.77% under a multiple output
specification.

In conclusion, it is undeniable that convexity has an important to huge impact on
cost estimates and hence on Overall Efficiency.

Efficiency Decomposition
From the efficiency decomposition discussed in section “Efficiency Decompositions
and the Testing of Convexity: A Priori Relations,” the overall efficiency component
has already been discussed in section “Cost Function Results.” Therefore, we focus
on technical efficiency components in this part.

As established in Proposition 5, T EC(x, y) ≤ T ENC(x, y). There is an
abundance of studies reporting efficiency measures computed relative to basic
convex (10) and nonconvex (9) technologies. We focus on just a few examples.
For instance, Stroobants and Bouckaert [120] compare libraries in the Flemish
region and report substantial differences between convex and nonconvex results for
three specifications (though no statistical tests are reported). As another example,
Mayston [90] evaluates UK economics departments and finds substantial differences
at the sample level (though again no statistical tests are reported).

Cesaroni et al. [35, p. 582–583] report on the decomposition OT E�(x, y) =
T E�(x, y) · SCE�(x, y) for five secondary data sets. These authors find that
convex and nonconvex OT E�(x, y) is only significantly different for two data
sets, while convex and nonconvex SCE�(x, y) happens to be significantly different
for all data sets and convex and nonconvex T E�(x, y) for most data sets. The
same authors also focus on conflicting cases in returns to scale determination using
Proposition 6: e.g., switches from increasing returns to scale (IRS) to decreasing
returns to scale (DRS), from CRS to IRS, and from CRS to DRS. While one data
set has no conflicting cases, four data sets find conflicting cases ranging between
6.98% and 39.02% of observations. Finally, these authors explore the markedly
different patterns of ray average productivity curves under convex and nonconvex
technologies.

Chavas and Kim [42, p. 69–70] report on convex and nonconvex T E�(x, y) and
SCE�(x, y): while no statistical tests are reported, the descriptive statistics seem to
be markedly different. Cesaroni and Giovannola [34, p. 128–129] establish results
for alternative convex and nonconvex cost-based efficiency components similar to
the above: though no statistical tests are mentioned, the descriptive statistics are
clearly different beyond doubt.
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Productivity Growth
Kerstens and Van de Woestyne [74] report empirical results for the immensely
popular Malmquist productivity index (e.g., Färe et al. [60]) as well as for the
Hicks-Moorsteen Total Factor Productivity (TFP) index (defined by Bjurek [17])
under various specifications of technology. For both indices, it turns out that convex
and nonconvex results for both CRS and VRS yield different descriptive statistics,
though no formal tests are provided regarding the statistical significance of these
differences.

Kerstens and Managi [72] focus on the Luenberger productivity indicator which
is defined in terms of the differences between directional distance functions (see
[37]) using basic convex (10) and nonconvex (9) technologies. Analyzing a huge
data set of petroleum wells, their findings can be summarized as follows. First,
productivity change is on average smaller under nonconvexity, and the resulting
distributions are significantly different. Second, substantially more observations
tend to push the frontier outward under nonconvexity and are thus involved in
creating technological change. Third, both β-convergence and σ -convergence are
being tested for and happen to occur only under nonconvexity, not under the
traditional convexity axiom. In a follow-up study of Chinese banks, Barros et
al. [15] also find that the Luenberger productivity change is on average smaller
under nonconvexity. Testing differences in productivity with respect to scale and
ownership does not yield different patterns according to convexity.

Finally, Ang and Kerstens [10] study productivity of US agriculture at the state
level using the Luenberger-Hicks-Moorsteen TFP indicator (introduced by Briec
and Kerstens [27]) again using basic convex (10) and nonconvex (9) technologies.
These authors report a higher TFP change under nonconvexity, and the resulting
distributions are significantly different.

Capacity Utilization
Johansen [71] introduces the notion of plant capacity as the maximum output vector
that can be produced with existing equipment with unrestricted variable inputs
per unit of time. Färe et al. [59] transpose this notion into a multi-output frontier
framework by using a combination of two output-oriented efficiency measures: one
relative to a technology including the variable inputs and another one excluding the
variable inputs. Walden and Tomberlin [125] report average output-oriented plant
capacity estimates that vary between 52% and 84% in the cases of a basic convex
(10) and a basic nonconvex (9) technology, respectively.

Kerstens et al. [79] argue that the output-oriented plant capacity utilization is
unrealistic when the amounts of variable inputs needed to reach the maximum
capacity outputs are not available. This is related to the attainability issue already
noted by Johansen [71]. These authors illustrate empirically that the scaling of
variable inputs is less implausible for nonconvex compared to traditional convex
technologies.

Cesaroni et al. [36] define an alternative input-oriented plant capacity notion
by using a combination of two sub-vector input-oriented efficiency measures only
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aimed at reducing the variable inputs: one relative to a standard technology and
one relative to a technology with the minimum output level per dimension among
all observed units. While these authors report average output-oriented plant capacity
estimates that are 92% and 89% for the convex (10) and nonconvex (9) technologies,
respectively, these apparent small differences nevertheless represent distributions
that turn out to be statistically significantly different. For the average input-oriented
plant capacity estimates, they report numbers of 120% and 121% for the convex (10)
and nonconvex (9) technologies, respectively: again these apparent small differences
reflect distributions that are statistically significantly different.

It goes without saying that such differences may well have potentially huge
implications in the design of policies to combat overcapacity in fisheries. Kerstens
et al. [77] report results from a short-run Johansen sector model allowing for the
reallocation of production between firms that is developed in two steps. In the first
step, output-oriented plant capacity estimates are computed. In the second step, the
industry model minimizes the industry use of fixed inputs in a radial way such that
total production is maintained at the current total level by reallocating production
among firm capacities. From the 398 vessels in the fleet, the convex plant capacity
estimates lead to maintain only 330 vessels, while the nonconvex estimates maintain
357 vessels. Thus, the required decommissioning effort resulting from the short-run
Johansen sector model is larger under convexity.

Kerstens et al. [78] aim to compare empirically technical and economic capacity
notions on both convex and nonconvex technologies. After defining these capacity
notions, an empirical comparison is performed using a secondary data set containing
data of French fruit producers. Two key empirical conclusions are that all these dif-
ferent capacity notions follow different distributions and also that these distributions
almost always differ under convex and nonconvex technologies.

FDH and Its Extensions: Further Methodological Refinements

One can mention a whole series of methodological refinements and variations that
have been introduced in the literature related to methods initially developed in a
convex setting.

First, traditional radial efficiency measures in FDHmodels yield potentially huge
amounts of slacks and surpluses since the efficient subset is limited to the corner
points; nonradial input-, output-, and graph-oriented efficiency measures have been
evaluated and found particularly relevant in the basic FDHmodel by De Borger et al.
[48]. Portela et al. [101] focus on some alternative graph-oriented (or nonoriented)
efficiency measures in the same context. Following up on Ebrahimnejad et al.
[55] Fukuyama et al. [64] develop least-distance efficiency measures for FDH
technologies that satisfy a strong monotonicity property.

Second, in the spirit of Bouhnik et al. [22] who proposed lower bound restrictions
on the intensity variables to avoid unreasonable optimal activity vectors in a convex
setting, Mairesse and Vanden Eeckaut [89] develop for these nonconvex production
models lower and upper bound restrictions to the scaling of observations.
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Third, several types of extreme points (including anchor points) can be distin-
guished in FDH (see Soleimani-damaneh and Mostafaee [119]). Fourth, Soleimani-
damaneh [118] develops a dynamic FDH production model that can be recursively
solved by means of simple enumeration.

Fifth, Tavakoli and Mostafaee [121] are the first to develop a network structure
production model that opens up the black box of production via parallel and
sequential production processes in a nonconvex world. These authors obtain closed
form solutions for the basic efficiency measures under FDH and its extensions.
Sixth, there is some work on the construction of three-dimensional sections of the
efficient frontier for nonconvex models via enumeration methods as developed supra
(see Krivonozhko and Lychev [80–83], Krivonozhko et al. [84]).

Finally, Tulkens [122] was the first to propose a Free Replicability Hull (FRH)
by allowing for integer replications of all observations, eventually complemented
by upper bounds on the integer replication process. It turns out that this FRH is
computationally quite challenging (see Ehrgott and Tind [52]). In a similar vein,
Green and Cook [66] define a nonconvex technology containing all observations
as well as all composite observations obtained by simple aggregation. This Free
Coordination Hull (FCH) can eventually also be complemented by an upper bound
on the number of observations being aggregated.

Thus, most of the analysis that has been developed for convex technologies can
somehow be transposed to FDH and its extensions. This simply illustrates that
this rich body of analytical results is not necessarily jeopardized when opting for
nonconvex technologies.

Mitigating Convexity: A Selection

It should be clear by now that if one drops the convexity axiom altogether, then FDH
and its extensions are the straightforward technological and economic value function
choices to consider. However, some people have sought to mitigate the impact of
convexity in a variety of ways. This section offers a selection of approaches defining
some alternative to the traditional convexity axiom and somehow avoiding FDH and
its extensions.

Partial Convexity

Several authors have attempted to relax the convexity axiom somewhat. Petersen
[97] initiated a small literature aimed at maintaining convexity in input space and
in output space solely, but not in the graph of technology. The implementation of
this relaxed set of assumptions is corrected by Bogetoft [18] with restrictions on
the dimensionality of the production technology. Bogetoft et al. [19] relax these
restrictions on the dimensionality of the input and output spaces, while Post [102]
improves upon the latter article by proposing a procedure that avoids computational
problems in large-scale applications.
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This relaxed assumption is justified by appeal to, for instance, the law of
diminishing marginal rates of substitution in the input space or to the idea of
diminishing marginal rates of transformation in the output space. However, it is
not clear how time divisibility can be applied in the context of this partial convexity
notion. Furthermore, one may question whether there really is, for instance, a law of
diminishing marginal rates of substitution in the input space. For example, Brokken
[33] summarizes three studies revealing that there are increasing marginal rates
of substitution of grain for roughage in beef production. Therefore, the law of
diminishing marginal rates of substitution is questionable.

Podinovski [100] introduces the idea of partial convexity between certain subsets
of inputs and subsets of outputs and derives BMIP for the traditional efficiency
measures. Leleu [86] proposes new LP formulations combining aspects of convex
and nonconvex production models across dimensions for all returns to scale
assumptions and for the directional distance efficiency measure. While Podinovski
[100, p. 555–556] justifies his partial convexity approach by appealing to divisibility
arguments pertaining to specific inputs and/or outputs, one may wonder whether
time divisibility is by definition related to the whole production process and that
setup times and indivisibilities destroy convexity altogether rather than only in some
subset of dimensions.

Finally, Chavas and Kim [42] adopt a different strategy to combine convex
and nonconvex models by defining the technology as a union of neighborhood-
based local representation of the technology each of which is convex. Obviously,
the union of convex technologies needs not be convex. By choosing very small or
very large neighborhoods, the technology as a union of neighborhood-based local
representations of the technology converges to the nonconvex technology (9) or the
convex technology (10), respectively. An obvious problem of the whole approach is
the neighborhood choice and its impact on productivity and efficiency analysis.

Regular Ultra Passum Law

Olesen and Petersen [94] intend to make convex models (10) suitable to estimate
optimal scale size by augmenting these with two additional maintained hypotheses
which imply that the frontier is consistent with smooth curves along rays in input
and in output space that obey the Regular Ultra Passum (RUP) law (i.e., mono-
tonically decreasing scale elasticities). This RUP law implies that the production
frontier must be S-shaped along any expansion path in input space. Obviously, such
technologies are nonconvex in input-output space. Olesen and Petersen [94] focus
on the multiple inputs single output case.

Olesen and Ruggiero [95] continue from there and focus on production tech-
nologies that are input homothetic. This allows to maintain convexity in input
and in output space but to allow for nonconvexities in input-output space. This
homotheticity assumption mainly serves to simplify the estimation procedure. Also
this presentation assumes only one output.
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In a sense, imposing the RUP law in this context again focuses on allowing
for nonconvexities in input-output space, just as in section “Partial Convexity.”
Therefore, the same reservations prevail. Furthermore, there are long-standing
misgivings on the use of homothetic structures in production theory as in Olesen and
Ruggiero [95]. Already Samuelson and Swamy [107, p. 592] conclude: “Empirical
experience is abundant that the Santa Claus hypothesis of homotheticity in tastes
and in technical change is quite unrealistic.”

FromGeneralized Convexity to Nonconvexity

We now focus on a modification of the CES − CET model introduced by Färe
et al. [58] that is a generalization of the traditional convex approach (10). This
CES − CET model has two parts: the output part is characterized by a Constant
Elasticity of Transformation specification, and the input part is characterized by a
Constant Elasticity of Substitution specification. Consider a generic map φr : Rd+ →
R

d+ defined as φr(z) = (zr
1, . . . , z

r
d). For all r > 0, this function is an isomorphism

from R
d+ to itself, and its reciprocal is defined on Rd+ as φ−1

r (z) = (z
1/r

1 , . . . , z
1/r
d ).

Given a subset B = {uk : k ∈ K}k∈K of Rd+, from Ben-Tal [16], one can define its
φr -generalized convex hull as:

Coφr (B) =
{
φr

−1
( ∑

k∈K
zkφr(uk)

)
:
∑

k∈K
zk = 1, zk ≥ 0

}
. (26)

Notice that this set is not convex in the “usual” case which corresponds to the
case where r = 1. The CES − CET model can then be defined as the set:

TC,γ,δ =
{
(x, y) ∈ R

m+ ×R
n+ : x ≥ φ−1

γ

( ∑

k∈K
zkφγ (xk)

)
, (27)

y ≤ φ−1
δ

( ∑

k∈K
zkφδ(yk)

)
,
∑

k∈K
zk = 1, zk ≥ 0

}
,

where γ and δ > 0. Paralleling Banker et al. [13], this construction is derived
from the notion of generalized convex hull defined in (26). For such a class of
models, the radial efficiency measure (2) can be computed making some obvious
linear transformations. Notice that Ravelojaona [103] has proposed a nonlinear
version of the directional distance function (see Chambers et al. [38]) that can also
be computed by linear programming methods.

Boussemart et al. [23, p. 334] state that a production technology T is said to be
homogeneous of degree α if for all λ > 0:

(x, y) ∈ T ⇒ (λx, λαy) ∈ T . (28)
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This technology has also been termed “almost homogeneous technology of degree
1 and α.” This degree of homogeneity of the technology has direct implications for
the nature of returns to scale.

Proposition 7 ( [23, p. 334]). Assume that the production technology T satisfies
T1–T4. Moreover, suppose that T is homogeneous of degree α. (a) If α > 1, then
T satisfies strictly increasing returns to scale; (b) if 0 < α < 1, then T satisfies
strictly decreasing returns to scale.

Thus, these homogeneous technologies exhibit either strictly increasing or
strictly decreasing returns to scale according to their degree of homogeneity.
Therefore, one can say that if the technology is homogeneous of degree α, then
it satisfies α-returns to scale. Obviously, strictly increasing returns to scale imply
nonconvexity of technology.

Boussemart et al. [23] propose to relax the definition proposed in Färe et al. [58]
by considering the following production model:

T
alpha
C,γ,δ =

{
(x, y) ∈ R

m+ ×R
n+ : x ≥ φ−1

γ

( ∑

k∈K
zkφγ (xk)

)
, (29)

y ≤ φ−1
δ

( ∑

k∈K
zkφδ(yk)

)
, zk ≥ 0

}
.

where γ and δ > 0. T
alpha
C,γ,δ satisfies an α-returns to scale assumption with α =

γ
δ
. This technology differs from the one proposed by Färe et al. [58] because it

suppresses the constraint
∑

k∈K zk = 1. While their model is not compatible with
an α-returns to scale assumption, model (29) satisfies axioms (T1)–(T4) and satisfies
α-returns to scale under a suitable specification of α.

Proposition 8 ( [23, p. 336]). The production technology T
alpha
C,γ,δ defined in (27)

satisfies:

(a) strictly increasing returns to scale if and only if γ /δ > 1;
(b) strictly decreasing returns to scale if and only if γ /δ < 1;
(c) constant returns to scale if and only if γ /δ = 1;

Furthermore, this notion of α-returns to scale has also been extended to FDH and
its extensions (see Boussemart et al. [23, p. 336]).

In empirical applications, γ and δ are a priori parameters: optimal parameter
values can be determined by applying a goodness-of-fit method. This can be done
using a grid search method. For example, Leleu et al. [87] analyze four types of
intensive care units and find overwhelming evidence of increasing returns to scale,
but at the hospital level most institutions operate under decreasing returns to scale.
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More recently, Boussemart et al. [24] attempt to endogenize γ and δ using global
optimization tools. They propose a tractable procedure to find an optimal value of
α under a generalized FDH technology. This approach fully endogenizes α and
estimate its value by linear programming. For each firm k ∈ K, we consider an
individual technology defined by:

Qγ,δ(xk, yk) =
{
(x, y) ∈ R

m+ × R
n+ : x ≥ λ1/γ xk, y ≤ λ1/δyk, λ ≥ 0

}
. (30)

The global technology is then the union of individual technologies as follows:

TNC,γ,δ =
⋃

k∈K
Qγ,δ(xk, yk). (31)

For all k, j ∈ K, let us denote:

E
(k)
γ,δ(xj , yj ) = min{θ : (θxj , yj ) ∈ Qγ,δ(xk, yk)}. (32)

By definition, one has E
(k)
γ,δ(xk, yk) = 1. From Boussemart et al. [24], one can show

that:

E
(k)
γ,δ(xj , yj ) =

[
βk(yj )

]δ/γ

.
[
αk(xj )

]
(33)

where for all k, αk(xj ) and βk(xj ) as in Proposition 2. Notice that this result
generalizes the one defined in the VRS case. It follows that:

ENC,γ,δ(xj , yj ) = min{θ : (θxj , yj ) ∈ TNC,γ,δ} (34)

= min
k∈K

([
βk(yj )

]δ/γ

.
[
αk(xj )

])
. (35)

By defining α = γ /δ, using the fact that any efficiency score is obtained in closed
form, one can then find α� which maximizes the quantity M defining an index of
goodness of fit as:

M(A;α) =
∏

k∈K
ENC,γ,δ(xj , yj ) =

∏

k∈K
min
k∈K

([
βk(yj )

]1/α
.
[
αk(xj )

])
(36)

subject to the constraint that (xj , yj ) ∈ TNC,γ,δ for all j ∈ K. Taking the logarithm
it is then easy to convert this optimization problem to a linear program. An empirical
application is proposed in Boussemart et al. [24].

In the same vein, based on Charnes et al. [40], we now consider the piecewise
Cobb-Douglas (CD) model. Let us define the map φ0 : Rd++ −→ R

d++ defined as
φ0(u) = (ln(u1), . . . , ln(ud)) . This function is a bijective function from R

d++ to
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itself, and its reciprocal is defined on R
d++ by φ−1

0 (u) = (exp(u1), . . . , exp(ud)) .

This piecewise Cobb-Douglas model can be written as:

TCD =
{
(x, y) ∈ R

m+n++ : x ≥
∏

k∈K
x

λk

k , y ≤
∏

k∈K
y

λ�

k ,
∑

k∈K
λk = 1, λ ≥ 0

}
.

This model is a generalized convex model derived from the notion of generalized
convexity analyzed by Ben-Tal [16]. A general taxonomy is provided in the next
subsection.

Semilattice Structures

In mathematics, a partially ordered set S for which every two elements have a
supremum contained in S is called an upper-semilattice. Hence for some dimension
d ∈ N, the partial order defined by u ≤ w if ui ≤ wi for all i ∈ {1, . . . , d}, with
u,w ∈ R

d+, realizes upper-semilattice structures in R
d+. The supremum of u and w

is determined by u ∨ w = (max(u1, w1), . . . ,max(ud,wd)). Note that the operator
∨ can be seen as taking the component-wise maximum.

Following Briec and Horvath [25], a subset L ⊂ R
d+ is said to be a B-

convex set, if ∀u,w ∈ L,∀t ∈ [0, 1] : u ∨ tw ∈ L. Obviously, B-convex
subsets determine a special class of upper-semilattice structures in R

d+ of which
the mathematical properties are analyzed in detail in Briec and Horvath [25]. Briec
and Horvath [26] impose B-convexity on technologies in production economics as
a substitute for convexity (and nonconvexity in the sense of FDH) and study general
properties of these technologies and related cost functions. Starting from the set of
K observations A = {(x1, y1), . . . , (xK, yK)} ⊂ R

m+ ×R
n+, the following B-convex

nonparametric technology is defined:

Tmax =
{

(x, y) ∈ R
m+ × R

n+ : x ≥
∨

k∈K
zkxk, y ≤

∨

k∈K
zkyk,

∨

k∈K
zk = 1, zk ≥ 0

}

,

(37)

with the notation

∨

k∈K
uk =

(
max
k∈K

(uk1), . . . ,max
k∈K

(ukd)

)
∈ R

d+,

for uk = (uk1, . . . , ukd) ∈ R
d+, (k ∈ K), expanding the operator ∨ to multiple

vectors. Notice the structural similarity with (10) by replacing summation with
component-wise maximum.

Dual to the notion of an upper-semilattice, a lower-semilattice is defined as a
partially ordered set S for which every two elements have an infimum contained
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in S. Applied to R
d+, this infimum of u,w ∈ R

d+ is determined by u ∧ w =
(min(u1, w1), . . . ,min(ud,wd)). Obviously, the operator ∧ takes the component-
wise minimum of both vectors.

Using this dual notion, Adilov and Yesilce [3] define a subset L ⊂ R
d+ ∪ {+∞}d

to be inverse B-convex if ∀u,w ∈ L,∀t ∈ [1,+∞] : u ∧ tw ∈ L, and study
its properties. By analogy with the B-convex case, Briec and Liang [29] define the
following inverse B-convex nonparametric technology:

Tmin =
{

(x, y) ∈ R
m+ × R

n+ : x ≥
∧

k∈K
zkxk, y ≤

∧

k∈K
zkyk,

∧

k∈K
zk = 1, zk ≥ 0

}

,

(38)

with the notation

∧

k∈K
uk =

(
min
k∈K

(uk1), . . . ,min
k∈K

(ukd)

)
∈ R

d+,

for uk = (uk1, . . . , ukd) ∈ R
d+, (k ∈ K). Compared with (10), summation is

now replaced with component-wise minimum. This type of production technologies
allows to take into account the situation where the inputs exhibit complementarity.
In such a case, the structure of the input set is similar to that of the Leontief
production function.

Radial efficiency measurements can be computed with respect to both technolo-
gies Tmin and Tmax by using enumeration algorithms developed in Briec and Horvath
[26] and Briec and Liang [29]. These new production models have recently been
applied in, e.g., energy (Andriamasy et al. [7]), transportation (Barros et al. [14]),
and the tourism industry (Goncalves et al. [65]).

Coming back to the model proposed by Färe et al. [58] Andriamasy et al.
[8] show that these production technologies are the Painlevé-Kuratowski lower
[upper] limit of the sequence of production technologies TC,r,r that are derived from
technology CES − CET (27) by setting γ = δ = r7:

Limr−→∞TC,r,r = Tmax. (39)

In addition id A ⊂ R
m++ × R

m++

Limr−→−∞TC,r,r = Tmin, (40)

7The Painlevé-Kuratowski lower [upper] limit (sometimes also called Peano limit) of the sequence
of sets {En}n∈N is denoted Lin→∞En [Lsn→∞En]. For a set of points p for which there exists a
sequence {pn} of points such that pn ∈ En for all n and p = limn→∞ pn, a sequence {En}n∈N
of subsets of Rm is said to converge, in the Painlevé-Kuratowski sense, to a set E if Lsn→∞En =
E = Lin→∞En, in which case we write E = Limn→∞En.
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and finally

Limr−→0TC,r,r = TCD. (41)

Andriamasy et al. [9] consider a class of closely related nonparametric produc-
tion models built on the so-called Max-Plus algebra. Let us consider the semi-ring
Rmax = (

R ∪ {−∞}
,⊕,⊗)

composed of the set R ∪ {−∞}
which is defined by

the maximization operation as addition s ⊕ t := max (s, t) and the usual addition
operation as multiplication s ⊗ t := s + t . −∞ and 0 are, respectively, the neutral
element of the “addition” ⊕ and the “multiplication” ⊗. One can derive from this
algebraic structure the following production model:

T⊕ :=
{
(x, y) ∈ R

m+ × R
n+ : x ≥

⊕

k∈K
(zk ⊗ xk), (42)

y ≤
⊕

k∈K
(zk ⊗ yk),max

k∈K
zk = 0, z ∈ R

K
}
.

This model is called a Max-Plus nonparametric estimation of the production tech-
nology. The efficiency of firms can be meaningfully evaluated using the directional
distance function introduced by Chambers et al. [38] for which some closed form
has been provided in Andriamasy et al. [9].

Paralleling the standard technology TC,CRS , it is quite natural to define a graph
translation homothetic Max-Plus nonparametric model of the technology. This is
done by dropping the last constraint in equation (42). The following technology
is Max-Plus convex and satisfies a graph translation homothetic (denoted th)
assumption:

T th⊕ :=
{
(x, y) ∈ R

m+ × R
n+ : x ≥

⊕

k∈K
(zk ⊗ xk), y ≤

⊕

k∈K
(zk ⊗ yk), z ∈ R

K
}
.

(43)

Notice that these types of algebraic structures have more recently been consid-
ered by Baldwin and Klemperer [12] to analyze discrete demand types and to prove
the existence of an equilibrium with indivisibilities.

Preliminary Conclusions

This selection is by definition incomplete and somewhat subjective. For instance,
we ignore Hackman [68, p. 135] who introduces the notion of projective convexity.
As another example, Kleine [80] offers a series of production models with general
or individual bounds on activity levels potentially leading to nonconvexities. Our
limited overview just offers a perspective on a non-negligible literature seeking
alternatives to the convexity axiom.
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Conclusions

Section “Technologies and Distance Functions: Basic Definitions” laid the founda-
tions by providing basic definitions of the traditional axioms underlying technolo-
gies and their representation via distance functions. Section “Axiom of Convexity:
Arguments” has focused on existing justifications for the axiom of convexity. Apart
from duality reasons that often seem to be misunderstood, we have stressed the
time divisibility argument and its weakness when indivisibilities also affect the
time dimension (e.g., setup times). Furthermore, we have cited some evidence
that decision-makers often have a hard time understanding the results from convex
analysis and sometimes almost explicitly object to its use.

Section “Nonparametric Nonconvex Technologies and Value Functions: Free
Disposal Assumption andMinimum Extrapolation Principle” started by a discussion
of the nonconvex FDH and its extensions and also their corresponding convex
technologies. The focus was on computational problems related to the need to
solve nonlinear binary mixed integer programs. Three solution strategies were
discussed: (i) BMIP, (ii) LP, and (iii) an implicit enumeration strategy, whereby
the latter turns out to be most efficient from a computational point of view. The
ensuing discussion of nonconvex economic value functions also touched upon these
computational problems and the same three solution strategies. Thereafter, the focus
moved to some popular efficiency decomposition and the formulation of basic tests
of convexity on the technology and on the cost function.

After this methodological analysis, we switched to an empirical perspective on
the use of FDH and its extensions grouped under four headings: (i) cost functions,
(ii) efficiency decompositions, (iii) productivity growth, and (iv) capacity utilization.
A final subsection discussed a series of methodological refinements of FDH and
its extensions revealing that almost all refined analysis developed for convex
technologies can somehow be transposed to FDH and its extensions.

Section “Mitigating Convexity: A Selection” has offered a selective review of
attempts to mitigate the impact of the convexity axiom while avoiding FDH and its
extensions. We focused extensively on partial convexity, the imposition of Regular
Ultra Passum laws, α-returns to scale, and semilattice structures. This review is
nowhere complete and reflects our own interests and biases.

An attempt to summarize the current state of affairs may be that the alternatives
for traditional convex technologies have now been around for a decade or so.
Empirical results reveal that convexity matters not only for the technology but also
for economic value functions. The latter may surprise some, but it reveals that the
issue of imposing convexity or not cannot be taken lightly. We consider attempts
to mitigate convexity while steering away from FDH and its extensions not very
successful at the moment. Therefore, unless we manage to renew the axiomatic
foundations of production theory in a fundamental way, it may be hard to ignore
using FDH and its extensions as well as its value functions and even harder to
ignore its empirical results. An open question is to what extent existing empirical
methodologies need to be re-examined to be able to cope with nonconvexities: given
the local nature of some of the results, new standards may need to be established.
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This lack of standards to report nonconvex results as well the need to go beyond
traditional convex optimization that is often considered a cornerstone for economic
analysis may well contribute to its negligence.
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